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The generating functions (GF) formalism was applied for calculation of spin density matrix evolution
under the influence of periodic trains of RF pulses. It was shown that in a general case, closed expression
for the generating function can be found that allows in many cases to derive analytical expressions for the
generating function of spin density matrix (magnetization, coherences). This approach was shown to be
particularly efficient for the analysis of multi-echo sequences, where one has to average over various fre-
quency isochromats. The explicit analytical expressions for the generating function for echo amplitudes
in a Carr–Purcell–Meiboom–Gill (CPMG) echo sequence, a multiecho sequence with incremental phase of
refocusing pulse, a gradient echo sequence including transient period were obtained for an arbitrary flip
angle and an arbitrary resonance offset. Comparison of the theory and the spin-echo experiments was
done, demonstrating a good agreement.
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1. Introduction

Long periodic trains of RF pulses represent an integral part of
MRI methods. The extensively used multiple spin echoes can serve
as an example of such kind. However, these echo sequences are
just a special case of magnetization evolution in a time-periodic
Hamiltonian. The calculation of density matrix evolution in a peri-
odic spin Hamiltonian is a complicated problem. There are only a
few approaches to consider the problem [1]. Here, we suggest an
approach based on the so-called generating functions (GF) formal-
ism. This formalism is one of the powerful methods of discrete
mathematics. The generating function for a series (infinite in gen-
eral case) of numbers M1, . . .Mn or matrices is defined as a function
of the complex variable z in the following way:

f ðzÞ ¼ M0 þM1zþ . . .þMnzn þ . . . ¼
X1
n¼0

Mnzn; ð1Þ

where jzj < 1, which usually ensures the convergence of the series.
For instance, one can consider echo amplitudes in the CPMG se-
quence with an arbitrary flip angle as the values Mn. It is often that
GF for a number series varying according to a certain law has a sim-
ple analytical form, whereas the expression for the nth element of
the sequence cannot be obtained analytically or is very
cumbersome.
ll rights reserved.

rova).
The specific property of GF is that it comprises complete infor-
mation about all Mn values at once. The element Mn can be found
by expanding GF in powers of z analytically or numerically. Also
conventional Fourier algorithm can be used for determining Mn

numbers from GF. Here we generalize the GF approach employed
in our previous paper [2] for echo amplitudes for the calculation
of spin density matrix evolution under the influence of arbitrary
periodic trains of RF pulses. The efficiency of the method is demon-
strated by calculating GF for the echo amplitudes in the CPMG echo
sequence with an arbitrary refocusing flip angle and an arbitrary
resonance offset, a multiecho sequence with incremental phase
of refocusing pulse, a gradient echo sequence including transient
period. Besides in this paper we present comparison between our
theory and experiment for CPMG sequence with p/4 and p/2 flip
angles of refocusing pulse.
2. General case of a periodic spin Hamiltonian

Let us consider density matrix evolution in Liouville space,
where density matrix represents a vector containing density ma-
trix elements. Let us denote the density matrix after the nth period
of Hamiltonian as ~qn. To obtain GF it is necessary to know the evo-
lution of spin density matrix during one period of the spin Hamil-
tonian. In other words, one needs the matrix A and the vector ~B
relating ~qnþ1 with ~qn in the following way:

~qnþ1 ¼ A~qn þ~B: ð2Þ
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If A and~B are known and do not depend on n, it is easy to obtain an
analytical expression for GF. To calculate GF let us multiply both
sides of Eq. (2) by zn and take a sum from n = 0 to infinity. The
left-hand side of this summation is

1
z
ð~q1zþ~q2z2 þ~q3z3 þ . . .Þ ¼ 1

z
ð~f ðzÞ �~q0Þ; ð3Þ

where~f ðzÞ is the GF:

~f ðzÞ ¼ ~q0 þ~q1zþ . . .þ~qnzn þ . . . ¼
X1
n¼0

~qnzn; ð4Þ

while the right-hand side summation gives

Að~q0 þ~q1zþ~q2z2 þ . . .Þ þ~Bð1þ zþ z2 þ . . .Þ

¼ A~f ðzÞ þ 1
1� z

~B: ð5Þ

Solving the resulting equation for GF~f ðzÞ one obtains

~f ðzÞ ¼ ðI� zAÞ�1 ~q0 þ
z

1� z
~B

� �
: ð6Þ

It is seen that according to (6), calculation of GF needs only ma-
trix inversion and therefore in many cases an analytical expression
for GF can be found. Generating functions for various periodic
pulse sequences can then be tabulated as it is done for Laplace or
Fourier transformations of various functions. This analogy is partic-
ularly relevant since as it is shown below GF is in fact a discrete
Fourier (Laplace) transform.

Then, any density matrix element can be easily calculated ana-
lytically or numerically using, for instance, a software package
where the expansion in power series is implemented as a couple
of standard instructions.

Taking z = eih (0 6 h < 2p) one can see that GF represents a dis-
crete Fourier series:

~f ðeihÞ ¼ ~q0 þ~q1eih þ~q2ei2h þ . . .þ~qneinh þ . . . ð7Þ

Therefore, the density matrix ~qn can be calculated using Fourier
transformation. One can also construct an experimental GF accord-
ing to Eq. (1), taking the experimentally determined data as Mn.
From comparison of the experimental GF with the theoretical GF
one can obtain parameters of the spin system. In addition, the sta-
tionary density matrix ðn ! 1Þ can be readily calculated from GF
as follows:

~qst ¼ lim
n!1

~qn ¼ lim
z!1
ðð1� zÞ~f ðzÞÞ: ð8Þ
3. CPMG sequence with arbitrary resonance offset and flip angle

Application of multiple spin echoes is a topical question in MR
imaging since these are very important techniques for measuring
proton density, relaxation times T1 and T2, diffusion coefficients,
etc. The properties of spin echo sequences with the arbitrary refo-
cusing angles were addressed in a number of papers [3–14].

In the conventional CPMG sequence, the refocusing angle is
equal to p. However, this demands a preliminary calibration of
the RF probe that can be time-consuming. It is also known that
any refocusing flip angle is able to produce spin echoes. Moreover,
smaller flip angles appear to be more preferable as they permit one
to decrease the RF load. Besides, the pulses usually have complex
excitation frequency spectra, so the flip angle cannot be described
by a single value of the refocusing angle. The approach proposed in
this work appears to be a powerful tool for the analysis of multi-
echo sequences since averaging over frequency isochromats can
be performed in GF yielding GF directly for echo amplitudes. In
the earlier paper [2], we obtained analytical expressions for GF
for echo amplitudes in the CPMG pulse sequence with an arbitrary
refocusing angle. In the present work, we generalized this GF ap-
proach for calculation of echo amplitudes for the CPMG sequence
for an arbitrary resonance offset and an arbitrary RF magnetic field
magnitude.

Consider now the pulse train (p/2)�y � TE/2 � ax � TE � ax �
TE � ax�. . .. Let us assume that the (p/2)�y-pulse is applied on res-
onance while the ax-pulses are non-resonant with the frequency
offset equal to Dx. Then the spin system evolution over one period
is subdivided into two evolution steps: the rotation under the RF
pulse and the precession period, accompanied also by spin relaxa-
tion. A relation between ~Mn and ~Mnþ1 is as follows:

~Mnþ1 ¼ QPQ ~Mn þ ðQPþ IÞ~Seq; ð9Þ

where

~Mn ¼ ðMþ
n ;M

�
n ;MznÞT;

Mþ
n ¼ M��

n ¼ Mxn þ iMyn;

superscript T stands for transposition; Mxn,Myn and Mzn are the x-, y-
and z-components of the magnetization vector at the instant of nth
echo, respectively, P is the RF pulse rotation matrix, Q is the matrix
describing the spin relaxation and Larmor precession during one
half of the inter-echo period (TE/2), the vector ~Seq is

~Seq ¼ Meq 0; 0; 1� e�
TE

2T1

� �T
;

where Meq is the thermal equilibrium spin magnetization, TE is the
echo time, T1 is the longitudinal spin relaxation time, and I is unity
matrix.

In the reference frame rotating with the frequency of RF field,
the following expressions for matrices Q and P can be obtained:

Q ¼

ffiffiffiffiffi
n2
p

U 0 0
0

ffiffiffiffiffi
n2
p

U�1 0
0 0

ffiffiffiffiffi
n1
p

0B@
1CA; ð10Þ

P ¼
k l t
l k� t�
t
2

t�
2 f

0B@
1CA; ð11Þ

where

k ¼ cos
a
2
� i sin u sin

a
2

� �2
; ð12Þ

l ¼ cos2 u sin2 a
2
; ð13Þ

t ¼ 2i cos u sin
a
2

cos
a
2
� i sin u sin

a
2

� �
; ð14Þ

f ¼ cos a cos2 uþ sin2 u; ð15Þ

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dx2 þx2

1

q
s; ð16Þ

u ¼ arctan
Dx
x1

; ð17Þ

n1;2 ¼ e
� TE

T1;2 ; ð18Þ
U ¼ e�iw ð19Þ

and x1 = cB1, B1 is the RF magnetic field amplitude, w is the phase
accumulated during one half of the inter-echo period (TE/2) for a
definite isochromat, T2 is the transverse spin relaxation time, s is
the pulse duration, c is the nucleus magnetogyric ratio. Then one
can write:

~Mnþ1 ¼ A~Mn þ~B ð20Þ

where A = QPQ and~B ¼ ðQPþ IÞ~Seq. Using Eq. (6) one can obtain the
following expression for GF of transverse magnetization Mþ

n :
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fþðz;UÞ ¼
X1
n¼0

Mþ
n zn ¼ Meq

C3U3 þ C2U2 þ C1U þ C0

D0 þ D1U2 þ D2U4 ; ð21Þ

where

C0 ¼ zn2ð1� zn1Þ sinusin
a
2
� icos

a
2

� �2
;

C1 ¼
2z2n3=2

2 1�
ffiffiffiffiffi
n1
p� �

1þ z
ffiffiffiffiffi
n1
p� �

sina
2 cosu sinusina

2� icosa
2

� �
1� z

;

C2 ¼1�zn1 sin2 uþ zcos2 u n2ð1þzn1Þsin2 a
2
�n1 cosa

� �
;

C3 ¼
2z

ffiffiffiffiffi
n2
p

1�
ffiffiffiffiffi
n1
p� �

1þ z
ffiffiffiffiffi
n1
p� �

sina
2 cosu sinusina

2þ icosa
2

� �
1� z

;

D0 ¼C0;

D1 ¼�n1n
2
2z3þn2

2z2 cos2 a
2
�cos2usin2 a

2

� �
�n1zðcos2 ucosaþ sin2 uÞþ1;

D2 ¼ zn2ð1� zn1Þ sinusin
a
2
þ icos

a
2

� �2
: ð22Þ

It is seen that quantities C0,C1,C2,C3 as well as D0,D1,D2 (given
by Eqs. (22)) are functions of the variable z only and parameterical-
ly depend on a, u, n1 and n2.

The expression (21) gives the GF for one definite isochromat.
Note that steady state magnetization can be easily found for a sep-
arate isochromat, thus from Eqs. (8), (21) and (22) it follows:

Mþ
st ¼

sin a cos uð1� n1Þ
ffiffiffiffiffi
n2
p

D0
U2 þ D1 þ D2U2
� �

jz¼1U
iðU2 � n2Þ þ ðU2 þ n2Þ tan

a
2

sinu
� �

:

ð23Þ

In the absence of spin relaxation, the steady state magnetization
is

Mþ
st ¼

2tana
2 cosu

ðU2�1Þ2þðU2þ1Þ2 tan2 a
2 sin2 u

ðU2þ1Þtan
a
2

sinu� iðU2�1Þ
� �

:

ð24Þ

At the first glance, the use of recurrent Eq. (20) is preferred for the
calculation of magnetization since expression for the GF is rather
cumbersome. But calculations according to Eq. (20) can be done
only numerically, and from our point of view it is always preferable
to have an analytical expression in hands, even if a cumbersome
one. Moreover, this expression is for one isohromat only. To obtain
the echo amplitudes, one should make an averaging over isohro-
mats. It is clear that this procedure can be rather inconvenient if
one has to use Eq. (20). Alternatively, averaging of GF over isohro-
mats as we will show below yields a very compact expression for
the GF of echo amplitudes.

To obtain the echo amplitudes, we have to average over all iso-
chromats. It is obvious that magnetization of each Mn isochromat
can be represented as

Mþ
n ¼

X2n

k¼�2n

KnkUk ð25Þ

This expression is used in the so-called Configurations approach
[15] and directly follows from Eqs. (9)–(11). U is different for differ-
ent isochromats, and it is clear that all Un for n – 0 average to zero.
Therefore, the null-configuration Kn0 is the only term that makes a
contribution to the echo signal (all other configurations give zero
when averaged over isochromats).

Similarly to Eq. (25), GF can be represented as

fþðz;UÞ ¼
Xþ1

k¼�1
FkðzÞUk; ð26Þ

which is the GF representation in the form of Laurent series in U.
To find the echo amplitudes GF, one has to omit the terms

Fk(z)Uk with k – 0 and to keep only the term F0(z). It is possible
to do this by integration of f ðzÞ
U over variable U along the unity circle

contour in the complex plane, and we obtain for F0(z):

F0ðzÞ ¼
1

2pi

I
jUj¼1

fþðz;UÞ
U

dU: ð27Þ

This integral can be found by calculating residues inside the unity
circle according to the theory of complex variable [16]. Finally, for
the echo amplitude generating function F0(z) we obtain the follow-
ing expression:

F0ðzÞ ¼
Meq

2
1þ

ffiffiffiffi
X
Y

r" #
; ð28Þ

where

X ¼ ð1þ zn2Þð1� zðcos a cos2 uþ sin2 uÞðn1 þ n2Þ þ z2n1n2Þ;
Y ¼ ð1� zn2Þð1� zðcos a cos2 uþ sin2 uÞðn1 � n2Þ � z2n1n2Þ:

ð29Þ

In resonance, the offset Dx = 0 and the angle u = 0, so the expres-
sion for F0 coincides with the result obtained in [2]. Furthermore,
defining angle ae as

cos ae ¼ cos a cos2 uþ sin2 u ð30Þ

one can rewrite (28) and (29) as

F0ðzÞ ¼
Meq

2
1þ

ffiffiffiffiffi
Xe

Ye

s" #
;

Xe ¼ ð1þ zn2Þð1� z cos aeðn1 þ n2Þ þ z2n1n2Þ;
Ye ¼ ð1� zn2Þð1� z cos aeðn1 � n2Þ � z2n1n2Þ:

ð31Þ

One can see that this expression coincides with the one for the res-
onant case, Dx = 0 [2], if one redefines a as ae.

If Mx0 and My0 are the initial transverse magnetization compo-
nents, the GF for echo amplitudes takes the following form:

F0ðzÞ ¼
Mx0

2
1þ

ffiffiffiffi
X
Y

r" #
þ i

My0

2
1þ

ffiffiffiffi
Y
X

r" #
: ð32Þ

In a particular case, let us consider the excitation pulse which is
non-resonant with the same offset Dx and a1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

1 þ Dx2
q

s1

(u1 ¼ arctan Dx
x1
; s1 is the excitation pulse duration), then the

expressions for Mx0 and My0 are as follows:

Mx0 ¼ Meq sina1 cos u1;

My0 ¼ �Meq sin2 a1

2
sin 2u1:

ð33Þ

The expression for the steady state obtained from null configuration
of GF appears to be considerably more simple than (23) and (24): if
the relaxation is neglected, then from Eqs. (8), (29) and (32) one can
obtain:

Mþ
st ¼

Mx0x1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

1 þ Dx2
q sin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

1 þ Dx2
q

t

2

������
������; ð34Þ

whereas in the presence of relaxation Mþ
st ¼ 0.

If T1 = T2(n1 = n2 = n), the magnetization amplitudes can be rep-
resented as the sum of Legendre polynomials:

Mþ
n ¼

nnMx0

2

Xn

k¼0

Pkðcos aeÞ � 2 cos ae

Xn�1

k¼0

Pkðcos aeÞ þ
Xn�2

k¼0

Pkðcos aeÞ
" #

þ i
nnMy0

2
½Pnðcos aeÞ � Pn�1ðcos aeÞ�:

ð35Þ

Having used this expansion and an integral representation of Legen-
dre polynomial Pn(cos ae) [17]
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Pnðcos aeÞ ¼
1

p
ffiffiffi
2
p

Z ae

�ae

ei nþ1
2ð Þhffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos h� cos ae
p dh

one can obtain an asymptotic behavior of echo amplitudes
ðn ! 1Þ for ae in the range (0,p):

Mþ
n ¼ nnMx0 sin

ae

2
� 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p tan ae

2

p cos nae � p
4

� �
n3=2

" #
þ innMy0

�

ffiffiffiffiffiffiffiffiffiffiffiffi
tan ae

2

pn

s
cos nae: ð36Þ

This asymptotic limit becomes valid for nsinae� 1.
Furthermore, the GF formalism can be extended to the echo-se-

quence with phase cycling of refocusing pulse. It may be shown
that the generating function Fc

0ðzÞ for such sequence has the fol-
lowing form:

Fc
0ðzÞ ¼

X1
n¼0

Mþ
n zn ¼ ei/=2F0ðze�i/Þ; ð37Þ

where / stands for the phase increment and F0(z) is defined in Eq.
(32). The derivation of the result is given in Appendix A.

4. Gradient echo sequences with arbitrary resonance offset and
flip angle

Consider the pulse train of gradient echo method
ax � TR � ax � TR � ax � TR�. . ., where ax is the flip angle of excita-
tion pulses, between the pulses magnetic field gradient G(t) is ap-
plied. We consider separately two cases. The first one is when the
gradient area S defined as

S ¼
Z TR

0
GðtÞdt ð38Þ

is nonzero, i.e. the gradient is not compensated. The second case is
when the gradient is compensated, i.e. S ¼ 0.

4.1. Uncompensated gradient (S–0)

4.1.1. The generating function for FID
For magnetizations which are measured just after each a-pulse,

i.e. FIDs, the following generating function can be obtained:

F0ðzÞ ¼
Meqt

ð1� zÞð1þ cos aeÞ
1þ ðcos ae � zn1Þð1� z2n2

2Þffiffiffiffiffiffiffiffiffiffi
XeYe
p

" #

¼
X1
n¼0

Mþ
n zn; ð39Þ

where Xe and Ye are the same as in Eq. (31) and t is defined in Eq.
(14). In the derivation of the GF in Eq. (39), averaging over all
uncompensated phases due to field gradient was performed. Note
that the sum in Eq. (39) begins from n = 0, here n corresponds to
the pulse number preceding the FID and n = 0 corresponds to the
first pulse. The steady state magnetization can be easily obtained
from (39) according to (8):

Mþ
st ¼

Meqt
1þ cos ae

1þ
cos ae � n1ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n1 cos aeð Þ2 � n2

2ðn1 � cos aeÞ2
q

264
375 ð40Þ

and coincides with the well known result [6]. If T1 = T2 (n1 = n2 = n)
then the transverse magnetization Mþ

n can be expressed explicitly
as the sum of Legendre polynomials:

Mþ
n ¼Meq

t
1þ cosae

1þ cosae

Xn

k¼0

nkPkðcosaeÞ�
Xn�1

k¼0

nkþ1PkðcosaeÞ
 !

ð41Þ
and the asymptotic behavior at nsinae� 1 is as following
(0 < ae < p):

Mþ
n �Mþ

st ¼
Meqtnnþ2

ffiffiffi
2
p

cos2 ae
2 ð1�2ncosaeþn2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pnsinae

p
� sin ðnþ1Þaeþ

p
4

� �
� sin

ae

2
sinae�

1�n
2n

cos
3ae

2

� 	

þ1�n

2n
sin naeþ

p
4

� �
þcos

ae

2

�
: ð42Þ
4.1.2. The generating function for echo
For the magnetization measured before each a pulse, i.e. echo,

the GF is as follows:

F0ðzÞ ¼
Meqt�

ð1� zÞð1þ cos aeÞ
1� ð1� zn1 cos aeÞð1� z2n2

2Þffiffiffiffiffiffiffiffiffiffi
XeYe
p

" #

¼
X1
n¼1

Mþ
n zn; ð43Þ

where Xe and Ye are defined in Eq. (31) and t* can be obtained from
Eq. (14). Here Mþ

n corresponds to the echo signal before the nth
pulse. Then the steady state magnetization is

Mþ
st ¼

Meqt�

1þ cos ae
1�

ð1� n1 cos aeÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� n1 cos aeÞ2 � n2

2ðn1 � cos aeÞ2
q

264
375; ð44Þ

that also coincides with the well known result [6]. Note that the
first magnetization amplitude Mþ

1 is equal to zero, while the second
one is not:

Mþ
2 ¼ 2Meqn

2
2 sin3 a

2
cos3 u sin

a
2

sin u� i cos
a
2

� �
: ð45Þ

Again, if T1 = T2(n1 = n2 = n) the transverse magnetization can be rep-
resented in explicit form by the sum of Legendre polynomials:

Mþ
n ¼Meq

t�

1þcosae
cosae

Xn�1

k¼0

nkþ1PkðcosaeÞ�
Xn�1

k¼0

nkþ1Pkþ1ðcosaeÞ
 !

ð46Þ

and for the asymptotic behavior nsinae� 1 we have (0 < ae < p):

Mþ
n �Mþ

st ¼�
2Meqt�nnþ2 ffiffiffiffiffiffiffiffiffiffiffiffi

tanae
2

p
cosae

2

ffiffiffiffiffiffi
pn
p

ð1�2ncosaeþn2Þ

� sin naeþ
p
4

� �
sin

ae

2
�1�n

2n
cos nþ1

2

� 	
aeþ

p
4

� 	
 �
: ð47Þ
4.2. Compensated gradient (S ¼ 0)

If the gradient is compensated during inter-pulse period (S = 0)
there is no need for averaging of GF over isochromats. Let us sup-
pose that not only the total gradient area between pulses is zero,
but also

R TR=2
0 GðtÞdt ¼ 0, i.e. the signal appears in the center of

the inter-pulse period. Then for the generating function one can
obtain the following expression:

FðzÞ¼ Meq
ffiffiffiffiffi
n2
p
ð1�zn1ÞðU1=2

0 tþ zn2U�1=2
0 t�Þ

ð1� zÞ 1�z3n1n
2
2þzcosaeðzn2

2�n1Þ� zn2ð1�zn1Þðk�U�1
0 þkU0Þ

h i
¼
X1
n¼0

Mþ
n zn ð48Þ

the magnetization number corresponds to the inter-pulse period
number, the null-number being assigned to the first period, the
quantity U0 = e�iDxTR accounts for phase increment due to the res-
onance offset, t and k are defined in Eqs. (12) and (14) respectively.



Fig. 1. Experimental (open circles) and calculated (solid circles connected with
dotted line) amplitudes of eight successive echoes. Resonance excitation and
refocusing (Dx = 0 rad/s), RF field amplitude is equal to x1 = 3140 rad/s, RF-pulse
flip angle is p/2. Tconv

1 ¼ 273 ms, TGF
1 ¼ 268 ms (subscripts ‘‘conv” and ‘‘GF” denote

‘‘conventional method” and ‘‘generating function”, respectively).
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The stationary magnetization can be easily obtained with the use of
Eqs. (8) and (48):

Mþ
st ¼

Meq
ffiffiffiffiffi
n2
p
ð1� n1ÞðU1=2

0 tþ n2U�1=2
0 t�Þ

1� n1n
2
2 þ cos aeðn2

2 � n1Þ � n2ð1� n1Þðk�U�1
0 þ kU0Þ

: ð49Þ

An explicit analytical expression for Mþ
n can be found from the GF in

two particular cases. The first one is when T1 = T2 (n1 = n2 = n) and
the expression for magnetization is as follows:

Mþ
n ¼

Meq

n3=2

n2 U1=2
0 tþ nU�1=2

0 t�
� �

1þ 2n sin2 ae
2 �

k�U�1
0 þkU0

2

� �
þ n2

264
� U1=2

0 tþ z1nU�1=2
0 t�

znþ1
1 ð1� z1Þðz1 � z2Þ

þ U1=2
0 tþ z2nU�1=2

0 t�

znþ1
2 ð1� z2Þðz1 � z2Þ

#
; ð50Þ

where z1,2 are the roots of the quadratic equation

1þ 2zn sin2 ae

2
� k�U�1

0 þ kU0

2

 !
þ z2n2 ¼ 0:

The second case is when Dx = 0 (i.e. resonance), then U0 = 1, ae = a
and the nth magnetization amplitude Mþ

n is given by

Mþ
n ¼Meq

i sin a
n1n

1=2
2

n1n2ð1� n1Þ
1� ðn1 þ n2Þ cos aþ n1n2




� 1� Z1n1

Znþ1
1 ð1� Z1ÞðZ1 � Z2Þ

þ 1� Z2n1

Znþ1
2 ð1� Z2ÞðZ1 � Z2Þ

#
; ð51Þ

where Z1,2 are the roots of the following quadratic equation

1� zðn1 þ n2Þ cos aþ z2n1n2 ¼ 0:
Fig. 2. Experimental (open circles) and calculated (solid circles connected with
dotted line) amplitudes of 32 successive echoes. Resonance excitation and
refocusing (Dx = 0 rad/s), RF field amplitude is equal to x1 = 22,430 rad/s, RF-
pulse flip angle is p/4.
5. Comparison of theory and experiment

To illustrate the use of our method, we carried out two experi-
ments. The first spin-echo experiment was conducted on a Bruker
Tomikon S50 tomography system (0.5 T). Spin echo measurements
were carried out with a phantom prepared as an aqueous solution
of copper sulfate. For all images, the parameters were as follows:
non-selective rectangular-shaped RF pulses with x1 = 3140 rad/s
and flip angle x1s ¼ p

2, echo time TE = 15 ms. In this experiment,
eight refocusing p

2-pulses were applied and eight echo signals were
collected, the excitation pulse flip angle was equal to p

2. The reso-
nance offset was set to Dx = 0 rad/s. Fitting the experimental ech-
oes under the assumption that T1 = T2, we found the best fit for
T1 = T2 = 268 ms. These values agree with the ones measured with
conventional CPMG sequence and inversion-recovery methods.
As it is seen in Fig. 1, there is a good agreement between the exper-
imental echo amplitudes and the values calculated from Eq. (32).

The second spin-echo experiment was done at 300 MHz on a
Bruker DRX-300 NMR spectrometer equipped with the microimag-
ing accessory. The refocusing flip angle in this experiment was
equal to p/4, and tap water was used to prepare the sample. RF
magnetic field magnitude was equal to 22,430 rad/s, TE = 780 ls,
32 echoes were collected. There were two measurements, one with
the pulses applied on resonance, another one with the resonance
offset Dx = 37,700 rad/s. Since T1 � T2 � 3s� TE = 780 ls, one
can neglect spin relaxation for all 32 echoes and Eqs. (35) and
(36) can be employed. The results of comparison of the calculated
and the experimental echo amplitudes are depicted in Figs. 2 and 3.
They show a good though not a perfect fit of the experimental data
(open circles) with the calculated (solid circles connected with a
dotted line) echo amplitudes even for large resonance offsets com-
parable to the RF pulse amplitude. The small deviations of theoret-
ical echo amplitudes from experimental ones we attribute to the
nonhomogeneity of RF field within the sample.
6. Conclusions

A new approach for analyzing the behavior of a spin system in a
periodic spin Hamiltonian was suggested. The approach is based on
the so-called generating function formalism and simplifies the
analysis of the spin system behavior under the influence of peri-
odic trains of RF pulses since this function comprises complete
information about all density matrices at once. General expression
for GF was found that allows one to derive analytical expressions
for GF of spin density matrix (magnetization, coherences) in each
particular case.

The approach is especially efficient for the analysis of multiecho
sequences, when to find the echo amplitude one has to average
over different isochromats. Furthermore the generating function
formalism allows one to extract easily the spin system parameters
from experimental data either by constructing the ‘‘experimental”
GF [2] and fitting it by the theoretical one or by direct fitting of



Fig. 3. Experimental (open circles) and calculated (solid circles connected with
dotted line) amplitudes of 32 successive echoes. Resonance offset for refocusing
pulses is Dx = 37,700 rad/s, RF field amplitude is equal to x1 = 22,430 rad/s, RF-
pulse is p/4.
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experimental and theoretical (obtained from the GF) magnetiza-
tions. The latter can be easily done by using the Fourier transform.

Two spin-echo experiments were performed with flip angles of
refocusing pulses equal to p/2 or p/4. In the latter experiment, two
measurements with the same sample were performed, with the on
resonance and out of resonance excitation and refocusing pulses. It
was shown that echo amplitudes calculated using the generating
function formalism nicely fit the experimental echo amplitudes.

Acknowledgments

This work was supported by Russian Foundation for Basic Re-
search (RFBR) grants 07–03–00424, 08–03–00539, 08–03–00661
and President grant for supporting the Loading Scientific Schools
(3604.2008.3).

Appendix A. Derivation of Eq. (37)

Let us consider the recursion Eq. (20) for the case of phase cy-
cling of refocusing pulse. The nth refocusing pulse then has the
phase (n � 1)/, where / is the phase increment. The rotation ma-
trix Pn of the pulse can be represented as:

Pn ¼ K�ðn�1ÞPKn�1; ðA:1Þ

where

K ¼
ei/ 0 0
0 e�i/ 0
0 0 1

0B@
1CA ðA:2Þ

and P is the same as in Eq. (11), i.e. the rotation matrix of RF pulse
with zero phase. Then the magnetization at the instant of the
(n + 1)th echo ~Mnþ1 is related with ~Mn in the following way:

~Mnþ1 ¼ QPnþ1Q ~Mn þ ðQPnþ1 þ IÞ~Seq

¼ QK�nPKnQ ~Mn þ ðQK�nPKn þ IÞ~Seq: ðA:3Þ

Taking into account that matrices Q and P commute with each other
we can recast Eq. (A.3) as:

~Mnþ1 ¼ K�nQPQKn~Mn þ ðK�nQPKn þ IÞ~Seq: ðA:4Þ

Introducing ~eMn:
~eMn ¼ Kn�1=2~Mn ¼ ðeiðn�1=2Þ/Mþ
n ; e

�iðn�1=2Þ/M�
n ;MznÞT ðA:5Þ

one can obtain the following recursion:

~eMnþ1 ¼ eQ P eQ ~eMn þ ð eQ Pþ K1=2ÞKn~S; ðA:6Þ

where

eQ ¼ QK1=2 ¼

ffiffiffiffiffi
n2
p

Uei/=2 0 0
0

ffiffiffiffiffi
n2
p

U�1e�i/=2 0
0 0

ffiffiffiffiffi
n1
p

0B@
1CA: ðA:7Þ

Then the GF for ~eMn can be found with use of Eq. (6):

~ef ðz;UÞ ¼ ðI� z eQ P eQ Þ�1 ~eM0 þ
z

1� z
ð eQ Pþ IÞ~Seq


 �
; ðA:8Þ

taking into account that

zð1� zKÞ�1~Seq ¼
z

1� z
~Seq and K1=2~Seq ¼~Seq:

It is easy to see that eQ can be obtained from Q given by (10) just by
substitution U ? Uei//2. This makes obvious that averaging

~ef ðz;UÞ
over U within unity circle (see. Eq. (27)) yields for averaged eF 0ðzÞ
exactly the same function as given by Eq. (32). Therefore one can
write down thatX1
n¼0

eMþ
n zn ¼ e�i/=2

X1
n¼0

Mþ
n znein/ ¼ F0ðzÞ; ðA:9Þ

where F0(z) is the same as in Eq. (32). From this equation one ob-
tains the following expression for Mþ

n generating function:X1
n¼0

Mþ
n zn ¼ ei/=2F0ðze�i/Þ: ðA:10Þ
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